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Anomalous scaling of velocity and temperature structure functions
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Scaling-range power-law exponents of velocity and temperature structure functions are examined through
the dimensional analysis framework of the refined similarity hypotheses using measurements in a variety of
turbulent flows and Reynolds numbers. The resulting magnitude of the scaling exponent associated with the
locally averaged energy dissipation rateis always larger than 2/3, whereas the exponent for the locally
averaged temperature dissipation rgtas always smaller than 2/3. While thg exponent may be reconciled
with the exponent of the velocity structure function, the distributions of ytheand temperature structure
function exponents are inherently different.
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In turbulent flows, considerable attention has been dewith x,=(re,)Y3, wheree, is the energy dissipation rate, the
voted to determining the power-law exponeiign) of or-  subscriptr denoting averaging over a scaleC,, is a flow
der n associated with the structure functiof($a)"), viz., dependent premultiplier, assumed independent afd ¢, .

Whena= 6 (e.g.,[5]),
((Sa)™y~réam, (1)
_ _ ((86%)%)=Cy(x?), (3)
Here « represents any of the three velocity fluctuations (
v, andw) or the temperature fluctuatioh, Sa=a(x+r)  with XgE(I’UBér_l/ﬁXrl/Z), where y, is the scalar dissipation

—a(x) is the difference between the values @fat two  rate. An asterisk denotes normalization by the Kolmogorov
locations separated by a distanceind the angular brackets |ength scalen= ,,3/4/(E>1/4, Kolmogorov velocity scaldJ

denote time averaging. A major motivation for this has beenz(,,<€>)1/4, and/or Obukhov-Corrsin temperature scéle
to establish if the scaling is anomalous, i.e., if the magnitud%«e(;) /U )2 Using dimensional arguments similar to
of £,(n) departs froom/3, the value predicted by Kolmog- those of[6], we can also write

orov [1], hereafter K41.

Determining £,(n) is fraught with difficulties, one of ([(8u*)(86%)2]12Py =C(xt,2), (4)
which is the identification of a suitable scaling range. There
is increasing evidence to indicate that a scaling rangevith x,,=(rx,)>. We consider here the dependencies of
which complies with K41 is unlikely to exist at Reynolds (x*?), (x}2), and (x},?) on bothR, and flow type. The
numbers usually encountered in laboratory experimentssehavior of these moments is compared with results from
Even for the atmospheric surface layer, where the Taylok41 and K62. Both K41 and K62 assume that the Reynolds
microscale Reynolds numberR,=(u®\,/v, (A,  number is very large and that isotropy applies for scales
=(u?)%((aulax)?)*?) is typically of order 16, the local  which extend through to the upper end of the scaling range.
derivatives of log(du)®), with respect to log [2], do not ~ Complete information about and y is not usually available
exhibit plateaux. However, their rate of decrease is suffiin experiments, reliable statistics associated with these two
ciently small over a particular region of such that the re- quantities being more readily accessible via direct numerical
gion may be identified with a scaling range and an averageimulation(DNS) and the large eddy simulatigihES) data
value of ¢, can be estimated. [7,8], albeit only for moderate values &, .

In this Rapid Communication, we consider data for Simultaneous measurementswénd 6 were carried out
((Sa)?) obtained in several flows and over a significantin four types of flow(cylinder wake, circular jet, rough wall
range ofR, . One data set was obtained in the atmospherid&oundary layer, and grid turbulencesing hot- and cold-
surface layer(ASL). The laboratory flows included both wire anemometry. Onlyu and v were measured simulta-
shearlesgdecaying grid turbulengeand sheared flowdree  neously in the ASL. For the grid measurements, multiple-
shear flows such as jets and wakes and wall bounded )flowswire probes were used. Measurements were maded Mt
In laboratory flows, fluctuations of temperature, treated as a30 (M is the mesh grid sizeand theR, was 52. Details on
passive scalar, were measured. The local derivatives Qfrobe construction may be found in Rdf8,10]. In all shear
((da)?) are compared with the K41 predictions for and  flows, in which heat was introduced as a passive scalar,
also with those which take into account the intermittency ofwas measured with a single cold-wifet-10% Rh wire, di-

the energy dissipation rate and scalar dissipation rate fluctugmeter d,,=0.63 xwm), etched to a nominal lengtH,,

tions, via the framework introduced by Kolmogor{@] in ~0.7 mm. These were operated in a Constant-cur{'@m
1962, hereafter K62. Whem=u, v, orw, the K62 phenom- mA) anemometer circuit. Measurements in the wake of a

enology(see alsd4]) gives heated circular cylinder[11] (R,=230; diameter d

=25.4 mm) were obtained on the axis centrelinexAd

((8a*)%)=C(x3?), (2 =70 using a single hot-wired(,=2.5 um; 1,~0.6 mm)
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FIG. 1. Distributions in grid turbulence di*2) and the local
slopesy, and &,, using different approximations fat; and y; .
Lines: (x*?2), right ordinate. Symbolsy,,, &,, left ordinate(x}?2),

Yu: — - —, V, isotropic approximation te; . - - -, O, €; approxi-
mated using Eq(5). —, O, 11-term approximation te; . (x%2),
ve: — —, /A, isotropic approximations te; andy;. — - - —, X, €

and y; approximated using Eq$5) and (6) respectively.<l, &,
obtained using ESS$>, &, obtained using ESS.

parallel with the cold-wire. A pair of parallel wiresingle
hot-wire d,=1.25 um andl,=0.26 mm) was also used
for measurements af and # on the centreline of a heated
circular jet (R,=550,[12]) atx/D=40 (D is the jet orifice
diametey. For the rough-wall turbulent boundary layeR,(

=390;[13], comprising cylindrical rods aligned on a heated
wall transverse to the floyymeasurements were carried out

using an X-wire ¢,=1.25 um, I,,/d,,=200) in combina-
tion with a cold-wire aty/ 6=0.37; & is the boundary layer
thickness. The ASL dateR), =4250), acquired in an experi-

ment over burnt grassland at a site near Deniliquin, Ne
South Wales|14], were stored on analog FM tapes and haven
been recently reanalyz¢d5]. The data used here are from a
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perature variancé#?). These estimates were compared in
[9] with the approximations

2

_Je au 3 au 2+2 Jv 2+2 au\ [ dv
€ap™ V| ®| 5 ay X ay |\ ax
36\2 36\2
Xap—™ K & +2 W (6)

using data obtained with a six-wire probe. An approximation
to €, by measuring 11 of the 12 terms using a three-
component vorticity probe was also carried out; see Ref.
[10]. Although the mean values ef,, and x,, were in close
agreement witi ;) and(xs), this is not a particularly sen-
sitive test for the approximations, since;s,) and (xiso)
were also in reasonable agreement wigh) and(x;) in this
flow. Other statistics, for example the spectraegf, and
Xap, Were almost identical to those ef and x;, in severe
contrast withe;s, and xiso- It is therefore of interest to con-
sider the effect different approximations have on the distri-
butions of(x*?) and(x%2), and in particular on the distri-
butions of the scaling exponents

_d(log(x}?))

= 7
d(log r*) @

Ya

for a=u and #; on the assumption thaix*2)~r* s, The

V\éymbol v, IS used to allow a distinction witlj,, the expo-

ent obtained directly from the structure function, viz.,

height of 1.7 m above the ground in near-neutral conditions.

Experimentally, approximations to the tr(@r full) values
of the dissipation rates;= v/2(Ju; /dx;+ du; 19x%;)? and y¢

=« (d0/9x;)? are usually made by assuming isotropy and

Taylor's hypothesis, Viz., €jso=15v(du/dx)? and xiso
=3k(d6/9x)2. However, in grid turbulence,e;) and {x;)

can be obtained relatively accurately from the streamwisé’

decay rates of the turbulent kinetic enexdy) and the tem-
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FIG. 2. Distributions of(e}??) in various flows and different
values ofR, . e approximated using isotropy, Grid; VV, cylinder
wake; A, rough wall turbulent boundary laye®, circular jet; +,
ASL.

_ dlog((3a*)?)

d(log r*) ®

a

Implicit in K62 is the notion that, statisticallyu depends on
andC, is independent of ande, . Plateaus iny, and{,
would be consistent with the existence of a power-law be-
havior for ((8a)?) and a dependence ob(¢) on e, . If v,
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FIG. 3. Scaling exponentg, and{, . Lines: y,. Symbols:{, .
— -—, V, cylinder wake- - -, A, rough wall; — —O, circular jet;
—--—, +, ASL.
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FIG. 4. Scaling exponentg, and{,. Lines: y,. Symbols:{,.
— -—, V, cylinder wake- - -, A, rough wall; — —O, circular jet.
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circular jet.

and ¢, are equal over the sammesegment, therC,, is inde-

pendent ofr ande, . A similar reasoning applies to EgR)

and(4).

The distributions ofx}?) (Fig. 1) corresponding to the
different approximations toe; exhibit approximately the
same behaviofthis is also true foKx},2), not shown. The
effect onvy, is unmistakable. The differences i, between
different approximations te; are primarily confined ta*
<100. The differences are greater fp, possibly due to
the influence of the correlation betweepand y, on (x}?2)
(see[8]). Relative to the exponents obtained with, and
Xap, those obtained witle;s, and x;s, depart further from
2/3. Also, for allr*, the distribution ofy, is more “anoma-
lous” than that fory,, especially when the isotropic ap-

100 300

FIG. 5. Scaling exponentg,, and {,,. Lines: y 4. Symbols:
lug. — - —, V, cylinder wake - - -, A, rough wall; — —,O,

within the scaling range, the distribution of, always ex-

ceeds 2/3, whereas that fy only exceeds 2/3 at sufficiently
high R, . There is a systematiR, dependence of,, con-
sistent with the estimates obtained in other stufli&§. The
relatively good agreement if, for different flows tends to
suggest thatx}2) may only apply in the higtR, limit. The

estimate ofe; .

monotonic variation ofy,, between the inflection near*
=10 to the limit of about 2/3 at large* suggests that, at
least where; or y; are estimated via isotropy, there will not
be an unambiguous scaling exponent(ff2). Obviously, a

proper comparison betweefy and y, requires an accurate

As with Fig. 3, an unambiguous scaling range cannot be

proximations are made. Regardless of the type of approximadiscerned in Fig. 4. For*=10, y, increases withr*, a
trend opposite to that of, and alsoy, (Fig. 3); v, is un-
corresponds roughly with the transition between dissipativeikely to exceed 2/3, whereas, exceeds 2/3 only at suffi-
ciently highR, . The greater discrepancy ip,, relative to

Y., may be a consequence of the previously observed stron-
ger intermittency of the scalar field relative to the velocity

tion, there is an inflection point iny, at r*~10, which

and scaling ranges. For the present grid fl&y,is too small
to expect a scaling range, i.e., a region wh&rés constant.
The extended-self similarit{ESS method [16] provides
estimates of the scaling exponenfg and &,, relative
to (|oul® and (|6u|(56)?) respectively. Here, &,
¢,=dlog((66*))/

=dlog((au*)?)/dlog[(|ou*[®)]  and

cord with those inferred fronx}2) and(x}?2).

Although the departure from 2/3 foy,, obtained from
Eq.(7), is overestimated wheg#)s, andy;s, are usedFig. 1),
it is nevertheless of interest to examine heoyy, estimated

field.

The use of the mixed order structure function
([(86)(8u)?1%3), Eq. (4), does not involve the correlation
dlog(|éu*|(86%)?). The latter exponents are in reasonable ac{€x;) SO that the assumption of isotropy is required only for
X: - The variation ofy,, with r* (Fig. 5 is similar to that of
vu- This agreement, implying support for the arguments
which underpin Egs(2) and(4), reflects to some extent the
established analoglll] between the predictions given by

using the isotropic approximations, depends on the flow ané41 and[18].

R, , especially since the isotropic approximations are ex-
pected to become more reliable Bg increases. Figure 2
contains distributions of e} ?® obtained in different flows
and R, . Whenr is sufficiently large, typically of ordet,
(€*?® must approach 1 sincée,) approachese). The
value ofr* at which this limit is reached must increasel.&s
or R, increases. Fig. 2 highlights the significant effRgthas

on (2.

distributions ofy, and ¢, , inferred from Eqs(7) and (8)

respectively, are shown in Figs. 3, 4, and 5dor u, 6, and

ué. While the region for direct comparison can only be fully acknowledged.
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In summary, the main conclusion which emerges from
Figs. 3 to 5 is that the distributions ¢f, (or {,,) andvy, (or
vug) May be reconcilable at sufficiently lard® , whereas
those of, and y, exhibit inherently different trends with
respect tar*. It would seem that the dimensional argument
implicit in Eq. (3) is not as well supported by our measure-
ments than that in either ER) or Eq.(4). Figure 1 suggests
that this inference is unlikely to be strongly affected by the

For the flows considered in Figure 2, the correspondinguse of the isotropic approximations fef and x
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